

LEARNING MANAGEMENT
SYSTEM TRAINING

VIRTUAL PROGRAMMING LAB

Hrvoje Leventić

hrvoje.leventic@ferit.hr

Osijek, June 13, 2019

AUTOMATIC GRADING OF

PROGRAMMING ASSIGNMENTS

Often STDIN/STDOUT based workflow

Test cases

Online environment/compiler/IDE

Conform the code to the input and output

BENEFITS

Cross platform

Multilingual

Remotely accessible

Code tester

WHY USE AN AUTOGRADER

Student engagement

Accelerates marking

More time with students

Easy to help students

WHAT AUTOGRADERS

EXIST?

There are a number of autograder options

out there

Both commercial and free/open-source:

Notable mention:

 repl.it

WHY VPL 1/2

Allows students to run code in browser

Validates student code against teacher-

designed test cases

Provides instant feedback to students

Autogrades student submissions

Already linked to student credentials

WHY VPL 2/2

Validates student code against other

submissions (Plagiarism Checker)

Grades go into Moodle Gradebook instantly

Transparency in Assessment

Support for multiple languages

Open source and in development since

2010

SO, HOW DOES IT WORK?

 demo?

ANATOMY OF A TEST CASE

Simple synthax

Four basic commands

Line matching

Exact matching or regex

DEMO 2

Simple line

matching

Two test cases

DEMO 2

Add a simple

python program

TEST CASES EASY TO FOOL

Test cases visible – easy to cheat:

 Printing test cases

Hard to debug – tries to guess output

 if number -> ignores text before

 ignores whitespaces for numbers

 numbers have to be in a correct order

DEMO 3

See if you can fool the grader

DEMO 4

USE REGEX IN OUTPUT

+Reduce cheating

+Reduce accidental

correct answers

-Students have to be

careful about

whitespace

Constrain inputs

Allow debug printing

MAIN VPL FUNCTIONS

DEMO 5

Solve the Demo 5 exercise as we will use it

to showcase:

 similarity checking

 automatic grading

 commenting on grades

 previous versions

 direct access to students code

REQUESTED FILES

Great for providing boilerplate code to
students

Force a certain language:

1 Create requested files with the desired
extensions

2 Limit number of files to the number of your
files

3 Students won’t be able to delete them upon
evaluation

EXECUTION FILES

Used to compile and evaluate student code

Not visible to students

vpl_evaluate.cases one of them

Available at compile time:

- Great for libraries students should not

be able to change

- Overwrites student’s file if same name

DESIGN YOUR OWN VPL

ACTIVITY

Create new VPL activity

Configure Execution options

Write Test cases

Add Requested files if you want the provide

a boilerplate code for your students

Test the activity

TIPS AND TRICKS

Scanf vs. gets vs. fgets

Turn off stdout buffering

setvbuf(stdout, NULL, _IONBF, 0);

Safe exam browser

Duplicating activity does not duplicate

grades – past exams free for practice

Creative cheaters – cheatsheet, grep

EVEN THIS MUCH

CAN TAKE YOU

QUITE FAR

SOME CREATIVITY, LARGE TEST CASES

AND MANUALLY CHECKING STUDENTS’

CODE SOLVES MOST OF THE PROBLEMS

OFTEN – IT’S THE EASIER AND LESS TIME

CONSUMING OPTION

PREVENTING CHEATING WITH

TWO SETS OF TEST CASES

Often used to prevent cheating by simple
printing of the test cases

One set of test cases visible to students

Other set uploaded after deadline and
regraded

Program has to work for both test cases

+Easy +Fast +NoSkillRequiredTM

- Hard to make test cases comparable and
prevent edge cases

DYNAMIC TEST CASES

„These are too many students, I cannot
possibly check every submission manually, let

me automate this”

The Holy Grail of student cheating prevention

+Prevents cheating by printing the testcases as
they are regenerated on each evaluation and
different on every run

+It makes you look cool

+You don’t have to check the code of each
submission manually

-It’s hard to do properly -It’s time consuming

-You have to know a bit of linux and bash

VPL CODE EXECUTION

LIFECYCLE

Three stages:

1. Compilation – Moves student code to
server; vpl_run.sh/vpl_debug.sh

creates vpl_execution

2. Running – Runs vpl_execution in

execution jail with input from
vpl_evaluate.cases

3. Evaluation – vpl_evaluate.sh parses

output, calculates score

VPL EXECUTION FILES

vpl_run.sh/vpl_debug.sh – prepares for

run, generates executable

vpl_execution – the executable, runs in

jail, does not have access to other files

vpl_evaluate.sh - runs the executable,

provides input, collects output, generates

the grades according to testcases

vpl_evaluate.cases – the testcases

HIJACKING ONE OF THE

EXECUTION STAGES

Two approaches:

1. Hijack vpl_evaluate.sh – write your own;

provide input to executable, parse output,

generate result text (weird synthax, hard,

edge cases)

2. Hijack vpl_run.sh – insert your own code

to run before creating the executable file,
directly generate vpl_evaluate.cases file

(easier to generate testcases, access to

student code before compilation)

WRITING YOUR OWN

EVALUATION LOGIC

Makes sense when the program output is

not STDOUT

We used it to check writing to binary files

-The most buggy, most complained about

lab exercise

+Lots of possibilities, e.g. Sending the file

with curl somewhere else

Testing 1/2 : first

Testing 2/2 : newlines and whitespaces

<|--

-Failed tests

Test 1: first

Test 2: newlines and whitespaces

--|>

<|-- -Test 1: first (-50.000)

Incorrect program output

--- Input ---

> 6

>1

>2

>3

>4

>5

>6

--- Program output ---

> 6

>

>1

>

>2

>

>3

>

>4

>

>5

>

--- Expected output (regular

expression)---

>.*RESULTS:

>1.*

DYNAMICALLY GENERATING

TESTCASES

Easier to accomplish

Benefit from a very well implemented

evaluator logic

Testcase file synthax easy to generate

dinamically

Pre-compilation checks

Free to use any language

OUR BEST APPROACH

vpl_run.sh:

#load common script and check programs

. common_script.sh

check_program gcc

get_source_files c

python generator.py

#compile

eval gcc -o vpl_execution -std=c99 $SOURCE_FILES
-lm -lutil

OUR EXPERIENCE

SHOWCASE AND IDEAS

Programming 2 exercises

Students only use C

Generators mostly in python

It’s hard to create fun exercises in C

DEMO

Build your own dynamic testcase generator

